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ABSTRACT: Neural networks are powerful data mining tools with a wide range of applications in drug design. This
paper largely concentrates on self-organizing neural networks that can be used for investigating datasets both by
unsupervised and by supervised learning. The representation of chemical structures is the key to success in
establishing useful relationships. Applications are shown for exploring different structure representations, for
establishing quantitative structure–activity relationships and for handling compounds having multicategory activities.
The applications comprise the separation of compounds according to different biological activities, the location of
biologically active compounds in large chemical spaces, the analysis of high-throughput screening data and the
classification of compounds according to mode of toxic action. Copyright  2003 John Wiley & Sons, Ltd.

KEYWORDS: self-organizing neural networks; Kohonen neural network; counterpropagation networks; chemical
structure representation; 3D structure generation; library screening; biological activity prediction
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In recent years, the term ‘data mining’ has come into
widespread use. While different people might have
different definitions, the overall objective of data mining
is clear: extract knowledge from a large set of data in
order to make predictions of new events. In this context,
clear definitions of the terms ‘data,’ ‘information’ and
‘knowledge’ seem necessary. Again, different people
might have different ideas on defining these terms;
however, the following definitions have found wide-
spread acceptance. Data become information when they
are put into a context; generalization of information can
lead to knowledge. Figure 1 illustrates this process for an
important task in drug design: the establishment of
relationships between chemical structure and biological
activity.1

Biological activity data are in most cases useless as
long as we do not know the chemical structure of the
compound that exerts this biological activity. Only when
we combine these two pieces of information, chemical
structure and biological activity, do we obtain informa-
tion. A set of such pairs of structure–activity data can be

analyzed by some learning method to find the inherent
relationship, to obtain knowledge on the structural
requirements for biological activity.

Data mining is thus an inductive learning method
because a series of experimental observations are used to
arrive at some general insight. Data mining is nothing
new; in fact, it is the predominant learning method in
many scientific disciplines.

Chemistry in particular has built its scientific knowl-
edge on inductive learning. With the advent of databases
and the world wide web that contain data in electronic
form, algorithmic learning methods have increasingly
been used, and thus data mining in its more restricted
sense by electronic means has gained increasing interest.

The range of inductive learning methods is wide:
statistical and pattern recognition methods, or neural
networks. In this discussion we will limit ourselves to
neural networks.
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A variety of tasks in drug design involve the analysis and
processing of many individual data:

� comparison of combinatorial libraries
� search for new lead structures
� establishment of structure–activity relationships
� analysis of high-throughput screening data
� optimization of a lead structure
� exploration of conformational flexibility
� analysis of ADME (absorption, distribution, metabo-

lism and excretion) data.

All these tasks can benefit from the use of data mining
methods.
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Artificial neural networks have been designed to model
the information processing in the human brain. The high
flexibility of the brain and the wide range of tasks
performed by the brain have led to the development of
numerous different artificial neural network models.2 A
variety of books deal with the different neural network
methods and their application to chemistry and drug
design.3

To highlight the importance of neural networks for
analyzing chemical data, it may suffice to mention that
each year more than 1000 publications appear on the use
of neural networks in chemistry.

The following characteristics render neural networks
so attractive for analyzing chemical data:

� Complex relationships are implicitly put down in the
weights of the network; thus, no explicit mathematical
form of such a relationship has to be given.

� Both linear and non-linear relationships can be
modelled.

� Two steps are involved in modeling relationships,
training and prediction. Training of a neural network is
usually fairly rapid even with large data sets, while
prediction is nearly instantaneous.

� By adding new data, a trained neural network can be
further refined; training does not have to start from the
very beginning again.

� Both unsupervised and supervised learning methods
are available.

An essential decision in the use of neural networks is
whether an unsupervised or a supervised learning method
is chosen.3 In fact, we recommend that any initial
investigations of a data set should first be made with an
unsupervised neural network. Before discussing this in
detail, a brief general presentation of the two learning
methods is given. In this discussion we will consider the
neural network as a black box containing the weights to
be adjusted without going into the details of the weight
adjusting algorithm.

Figure 2 shows the essential outline of supervised
learning. For supervised learning a series of data pairs
consisting of objects and the corresponding target values
of physical, chemical or biological data characterizing
these objects should be given. An object represented by
some descriptors is input into the neural network initially
containing randomly assigned weights. With random
weights the output of the neural network is necessarily
wrong. Comparison of the obtained output with the
desired target value of the input object provides the error
of prediction, which is fed back to the neural network to
adjust the weights in order to minimize the output error.
This process is iteratively repeated with a series of
objects and their target values until the output error has
fallen below a predefined threshold.

Such a trained neural network can then be used to
make predictions by inputting new objects. The descrip-
tors of the new object are combined with the weights in
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the network to calculate an output value (or output values
if more than one target value is used in the training of the
network).

The most widely used supervised neural network
learning algorithm is back-propagation learning, which is
usually applied in a multilayer feed-forward network.4

In unsupervised learning, the representations of objects
are investigated without using the property to be studied
in the training of the neural network. One way of doing
this is to use a neural network as a projection method. We
can consider the descriptors used to represent the objects
as coordinates of a space. An object, such as a molecule,
is then a point in this multi-dimensional space. The
objects may be found in various clusters in the high-
dimensional space (Fig. 3).

An unsupervised neural network is then used to project
the points from the high-dimensional space into a space
with a smaller number of dimensions such as a two-
dimensional plane. The purpose of this projection is to
preserve as well as possible the topology of the high-
dimensional space, such as the clustering of the objects,
after projection into the low-dimensional space.

The clusters may be associated with different types of
properties (different biological activities) which can then
be identified after projection. It should be emphasized,
however, that no knowledge on such properties (activi-
ties) is used in determining the projection by training the
neural network. This is the essence of unsupervised
learning.

It should also be mentioned that the human brain
performs such projections by generating sensory maps of
the environment in the visual, auditory, or somatosensory
cortex. One such unsupervised learning method is the
self-organizing neural network introduced by Kohonen.5

This method will be explained in more detail in the next
section.
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The self-organizing neural network was introduced by
Teuvo Kohonen nearly 20 years ago.5 It is that neural
network which probably has the closest analogy to some
of the information processing in the brain, particularly as
concerns the generation of sensory maps. The neurons of
a Kohonen network are usually arranged in a two-
dimensional layer, each neuron containing m weights. In
fact, the neurons contain as many weights as the objects
that are sent into a Kohonen network have descriptors.
Figure 4 illustrates the architecture of a Kohonen
network.

An object, a sample, s, represented by m descriptors,
xsi, is sent into a two-dimensional network of neurons,
each neuron, j, having m weights, wji. An object will be
mapped into that neuron, c, that has weights most similar
to the descriptors of the input object [Eqn. (1)]. This

neuron is called the central, or winning neuron.

outc � min
�m

i�1

�xsi � wji�2
� �

�1�

First, the weights of the network are randomly initialized.
A weight adaption algorithm is then invoked as given by
the equation

wji
new � wji

old � ��t� � a�dc � dj��xi � wji
old� �2�

where wji
new and wji

old are the new and old weights,
respectively, � is the learning rate, dependent on time or
iteration cycle, t, dc� dj is the topological distance
between the central neuron c and the current neuron j, and
a(�) is a topology-dependent scaling function. A new
object input into a Kohonen network will be mapped into
a neuron whose distance from the previously winning
neuron is dependent on the similarity of the two objects.
If the two objects have very similar descriptors they will
be mapped into the same or closely adjacent neurons.
Thus, by training a Kohonen network iteratively with a
dataset of objects, a mapping of the objects into a two-
dimensional space will be obtained that reflects the
topology, the arrangement of the objects in the m-
dimensional space.

One of the most important advantages of a Kohonen
network is that it can generate maps and, thus, visualize
relationships of objects. This can be used for similarity
perception and for clustering. In this context, it is a major
advantage that on expansion of a dataset by addition of
new data training does not have to start from the very
beginning. Rather, the trained network can be used, the
new data are input and thus training is taken up a few
times until the network has adjusted to the new data.

A two-dimensional arrangement of neurons can have
two different types of topologies: a rectangular topology
where the neurons in the center have eight immediate
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neighboring neurons, whereas neurons on the border have
only five or even only three neighbors (for the neurons in
the four corners). In order to provide each neuron with the
same number of immediate neighbors, a toroidal
topology has to be chosen. In this case, the neurons are
arranged on the surface of a torus. For better visualization
of the mapping obtained when using such a toroidal
Kohonen network, the torus is cut along two arbitrary,
perpendicular lines and the surface of the torus spread
into a plane (Fig. 5). It should then be remembered that
the neurons on the extreme left-hand side are to be taken
as neighbors of the neurons on the extreme right-hand
side. An analogous situation exists between the neurons
on the uppermost and those of the lowermost line.

Here, we refer to two different types of applications of
Kohonen networks: similarity perception or interpola-
tion. Which type of application is invoked is mainly
determined by the ratio of the size of the network as
compared to the size of the dataset.

If the number of neurons is taken smaller than the
number of objects in the dataset, several objects are
forced into the same neuron, thus allowing one to
perceive their similarity. The less neurons there are, the
more objects are forced into the same neuron. With
continuing decrease in the size of the network, however,
the danger of collisions, of forcing objects belonging to
different classes into the same neuron, increases.

If the number of neurons of the network is, however,
chosen to be larger than the number of objects in the
dataset, then the objects are distributed over the network
with a number of neurons not receiving any objects.
These neurons are, however, not really empty, but
contain weights that correspond to (new) objects. Such
networks can be chosen for interpolating data. For
example, we have chosen such an approach for the
simulation of infrared spectra, interpolating new infrared
spectra from those that have been used for training the
network.6
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It has been emphasized that Kohonen networks are based

on unsupervised learning; the property of interest is not
used during the training of the network. The basic
learning algorithm can, however, also be used for
supervised learning, for finding a relationship between
the objects and one or more properties of these objects.
To do this, simply the architecture of the networks has to
be extended; the Kohonen network shown in Fig. 4 has to
be extended by as many layers as there are properties of
the objects to be studied. The architecture then consists of
an input block for representing the objects and an output
block containing the properties of the objects (Fig. 6).
This type of neural network is called a counterpropaga-
tion network.7

The properties of an object are stored in the lower
block at exactly the same position as the object is stored
in the upper block.
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We have implemented a Kohonen neural network that
particularly emphasizes the visualization aspect of such a
network by having included several powerful graphic
tools for visualizing chemical data. In order to show the
power of a Kohonen network in visualizing the distribu-
tion of chemical objects we take a rather trivial dataset
consisting of 11 aromatic hydrocarbons, 14 aliphatic
hydrocarbons and 11 alcohols and phenols. These
structures were initially represented by a 25-dimensional
descriptor (the molecular dipole moment and an auto-
correlation vector for both the partial atomic charges and
the atom polarizability with 12 components each).8

This set of descriptors was reduced by a genetic
algorithm to seven descriptors. The dataset of 36
compounds was sent into a Kohonen network of 6� 3
neurons having toroidal topology. Different drop-down
windows are provided for setting the topology and size of
the network as well as controlling various parameters of
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the learning procedure. After training of the network the
results were visualized by assigning a dark gray color to
the aliphatic hydrocarbons, a light gray color to the
alcohols and phenols and a gray color to the aromatic
hydrocarbons. The resulting map is shown in Fig. 7; one
neuron did not receive any compound at all and is
therefore colored white.

As can be seen, the compounds cluster according to
their class memberships. (It should again be emphasized
that the clustering of these structures according to
compound class is an easy task; it was chosen for
illustration purposes.)

In order to show the distribution of the compounds in
the network, an option is incorporated into SONNIA that
allows one to visualize that compound (the centroid)
which most closely corresponds to the weights of each
neuron. Figure 8 shows the result obtained.

Furthermore, all the compounds mapped into an
individual neuron can also be shown. Thus, by clicking
on the neuron at position 0,4 Fig. 9 is obtained, showing
that both 2-propanol and tert-butanol are mapped into
this neuron, emphasizing that the neural network has
recognized the close similarity of these two compounds.

After this admittedly simple, illustrative case, we show
the results obtained in a more relevant investigation. The
dataset consisted of 299 compounds comprising 75 5-
hydroxytryptamine 5-HT1a-receptor agonists, 75 hista-
mine H2-receptor agonists, 75 thrombin inhibitors and 74
monoamine oxidase MAOA inhibitors. The compounds
were represented by a 128-dimensional vector obtained
from an atomic radial distribution function g(r) [see Eqn.
(3)] using ai = aj = 1 in order to represent the molecular
graph.9 The 3D structures were obtained from the 3D
structure generator CORINA.10

g�r� �
�N�1

i�1

�N

j�i

aiaj exp �B�r � rij�2
� �

�3�

where ai and aj are atomic properties (e.g. partial atomic
charges obtained by the PEOE algorithm),11 rij is the
distance between atoms i and j in 3D space, r is a running
variable, B is a so-called temperature factor and N is the
number of atoms in the molecule. The dataset was sent
into a Kohonen network consisting of 15� 15 neurons
having rectangular topology. The progress of training can
be monitored by plotting the error after each presentation
of a new object to the network (a cycle). Figure 10 shows
the development of the error over 2990 cycles corre-
sponding to sending the entire dataset of 299 compounds
10 times through the network (10 epochs).

After these 10 epochs, training was stopped and the
result of mapping the 299 compounds into 225 neurons
was visualized by assigning the compounds to the four
different classes of agonists or inhibitors. It should again
be emphasized that this information was not used during
training, the training was unsupervised. Each neuron was
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assigned a symbol that corresponded to the majority of
compounds mapped into this neuron: thrombin inhibitors
with an�, 5-HT1a-receptor agonists with a circle, MAOA

inhibitors with a diamond and H2-receptor agonists with a
cross. Neurons that did not receive a compound at all
were assigned a white color.

Figure 11 shows on the left-hand side the map that was
obtained. An option is provided to indicate those neurons
that contain compounds of different classes (collisions).
This is indicated in the map in Fig. 11 on the right-hand
side by coloring the corresponding neurons (e.g. in
black).

The maps show that a fairly reasonable separation of
the four classes of compounds could be achieved—recall
that a 128-dimensional space was projected into two
dimensions!—with only a few (four) neurons with
collisions. Again, clicking on a specific neuron shows

all the compounds that are projected into this neuron.
This is done in Fig. 12 with neuron 1,14 of Fig. 11
showing a neuron with collisions containing both MAOA

inhibitors and 5-HT1a-receptor agonists.
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The objects to be dealt with in drug design are many-fold:
genes, proteins, small molecules, chemical reactions,
metabolic pathways, etc. Here, we will focus only on
small molecules and consider the problem of their
representation in order to be able to input them into
neural networks.

If a dataset of objects is investigated by a learning
method such as a statistical or pattern recognition
method, or a neural network, the objects have to be
represented by the same number of descriptors or
variables. This can clearly be seen from Fig. 4, where
each object is represented by a vector of the same length,
consisting of m descriptors.

In most cases, a dataset of compounds will consist of
molecules of different sizes and of different numbers of
atoms. Thus, if one wants to represent the structure of a
molecule, a mathematical transformation has to be
performed in order that molecules with different numbers
of atoms end up with the same number of descriptors.

Furthermore, various degrees of sophistication can be
chosen for structure representation, from the constitution
through the 3D structure to molecular surfaces. We have
developed a series of methods and corresponding soft-
ware packages to automatically derive 3D structures or
molecular surfaces from the constitution of a molecule as
represented by a connection table.

Furthermore, several methods have been developed to
calculate fundamental physicochemical properties of the
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atoms and bonds in a molecule. These physicochemical
properties can be combined either with the constitution, the
3D structure or molecular surfaces. Then, these structure
representations are submitted to mathematical transforma-
tions such as autocorrelation or atom radial distribution
functions to fulfill the requirement of a fixed number of
descriptors irrespective of the size of a molecule.

Figure 13 gives an overview of these software tools
and how they can be combined to end up with different
structure representations.

We cannot go into the details of structure representa-
tion here, and have to restrict ourselves to throwing a few
spotlights on the methods that we have developed and
how they can be combined. Some more insight will be
provided by the applications in the following sections.

The kind of structure representation to be chosen will
be dictated by the problem that has to be studied. Usually,
various structure representations will have to be explored
before the one working best for the given problem will be
found. Furthermore, the size of the dataset will be of
influence: in order to keep computation times within
reasonable limits, less sophisticated structure representa-
tions will have to be chosen for very large datasets. For
datasets with many millions of structures one will
probably have to stay with topological representations,
leaving the representation of molecular surfaces to
situations where the number of compounds is smaller.
However, the methods that we have developed are so
rapid that surface properties have been calculated with
datasets of a few hundred thousand molecules.8

In the following we will only briefly mention a few of
the systems indicated in the overview of Fig. 13.
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CORINA (COoRdINAtes) rapidly generates a 3D mol-
ecular model when given information on the constitution
of a molecule as represented in a connection table such as
an SDFile or a SMILES string. CORINA is a data and

rule based system that is applicable to the entire range of
organic chemistry and also to many organometallic
structures.10

Table 1 gives the results for converting the entire open
database of the National Cancer Institute in a single run
into 3D models.

CORINA can be accessed on the Internet at http://
www2.chemie.uni-erlangen.de/services/3d.html. Up to
1000 structure can be converted free of charge. For
commercial applications, CORINA is distributed by
Molecular Networks.12
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PETRA (Parameter Estimation for the Treatment of
Reactivity Applications) collects a series of methods for
the calculation of all-important electronic and energy
effects in organic molecules such as heats of formation,
bond dissociation energies, charge distribution, quantita-
tive measures of the inductive, resonance or polariz-
ability effects, etc.13 These methods are all empirical in
nature in order to have them rapid enough to be able to
calculate large datasets. Most of the methods have been
published previously by our group. Table 2 gives an
overview of the kind of properties that can be calculated
for the atoms, bonds or entire molecule.
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The problem of representing molecules having different
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Conversion of the database of the National Cancer Institute:
Number of structures (October

1999)
249081

Conversion rate 99.5%
CPU time (Pentium III/600 MHz) 9600 s, 0.04 s/molecule
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Atomic properties—
Charges q�, q�, qtot
Electronegativities ��, ��, �LP
Polarizabilities �i

Bond properties—
Charge differences �q
Electronegativity differences ��
Bond polarizabilities �b
Stabilization by delocalization D�, D�

Bond dissociation energies BDE
Molecular properties—

Heats of formation �Hf°
Mean molecular polarizabilities �
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numbers of atoms with the same number of descriptors
has already been mentioned. One mathematical transfor-
mation that produces a fixed, preset number of descrip-
tors for a molecule is autocorrelation, as given by the
equations

A � 	A�d1�� � � � �A�dl�
 �4�
where

A�dk� �
�n

i�1

�n

j�1

p�i� p�j�� �nij� dk�

and ��nij� dk� �
1� if nij � dk

0� else

�
�5�

In Eqn. (4), l gives the dimension of the autocorrelation
vector. In Eqn. (5), dk gives the number of bonds for
which the autocorrelation is calculated and nij is the
number of bonds between atom i and atom j; p is a
property such as the partial charge on atoms i and j or on
two points of the molecular surface. The usage of
different atomic properties p such as mass, charges,
polarizability or electronegativities allows the considera-
tion of a broad range of physicochemical effects. n is the
number of atoms in the molecule. The equation for 3D
autocorrelation is according to Eqns (4) and (5) but the
distance is then the actual three-dimensional distance
between two atoms. Accordingly, dk is then an interval
and not a discrete value. The use of autocorrelation in
molecular structure representation has a long his-
tory.8,14,15

Having briefly presented methods to be used for the
representation of molecular structures, we are now set to
apply the powerful tools of Kohonen and Counter-
propagation networks to problems encountered in drug
design. As we can only give a few examples here, we will
focus our discussion to typical problems and use them to
give general guidelines.

�&5������� 8��&"!�&� �#  �##&�&�� 9��,
����"�� �"��:��;<"���&"����  �##&�&��
���!"�!�& �&5�&�&��������

The task of the study presented here was to separate a
dataset of 172 molecules into benzodiazepine agonists
(60 compounds) and dopamine agonists (112 com-
pounds).16 Figure 14 shows some of the structures
contained in the dataset emphasizing the problem
mentioned in the previous sections: having to represent
molecules with different numbers of atoms with the same
numbers of descriptors.

The structures were represented by topological auto-
correlation. Thus, d in Eqn. (4) was the number of bonds
between the two atoms i and j; d was kept running from 2
to 8 (seven distances altogether). As a first shot, as no
specific requirements of the receptor were available, we

decided to use a rather broad structure representation,
including a variety of physicochemical effects in the
autocorrelation vector. Separate seven-dimensional vec-
tors (seven distance intervals!) were constructed with
�� atomic charges, (�� �) atomic charges,
�� electronegativity, �� electronegativity, lone pair
electronegativity, atomic polarizability and an atomic
property of 1 (to just represent the molecular graph).
These seven autocorrelation vectors were then concate-
nated to give a 49-dimensional representation of the 172
molecules in the dataset. Training a 10� 7 Kohonen
network with the entire dataset gave a map that was then
marked by assigning colors to the network depending on
whether a neuron contains a dopamine or a benzodiaze-
pine agonist (Fig. 15).16

As can be seen, the two sets of molecules separate
fairly well. This is even more remarkable as the class
membership was not used in training the network but
only in visualizing the results of training (unsupervised
learning!). This attests to the relevance of the chosen
structure representation for reproducing effects that are
responsible for the different binding of dopamine and
benzodiazepine agonists.

Next we turned our attention to the question on
whether we still can see the separation of the two sets of

#����� $.% ;������������� �� ���������� �� ������� ��
���6���6����� ��������

#����� $0% .�
���� ��� ������� ���� � ������ �� !!�
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molecules when they are buried in a large dataset of
diverse structures. For this purpose we added this dataset
of 172 molecules to the entire catalog of 8223 compounds
available from a chemical supplier (Janssen Chimica).
Now having a larger dataset one has to also increase the
size of the network, and a network of 40� 30 neurons
was chosen. Training this network with the same 49-
dimensional structure representation as described, pre-
viously but now for all 8395 structures provided the map
shown in Fig. 16.

Even in this fairly diverse dataset of structures, the
dopamine and benzodiazepine agonists could be sepa-
rated fairly well; only two neurons had collisions
between these two types of compounds. What is even
more important, however, is that we now know in which

chemical space one would have to search for new lead
structures for dopamine or for benzodiazepine agonists.

To illustrate this point, Fig. 17 shows the contents of
the neuron at position 3,9. This neuron obtained two
dopamine agonists and three compounds from the
Janssen Chimica catalog of unknown biological activity
which might be taken as lead structures for developing
dopamine agonists.

The results presented here imply that a similar
approach can be used for comparing two different
libraries, for determining the degree of overlap between
the compounds in these two libraries.

 &:&��5��� � �"�&&� #�� � :���!��
��9���;<&=5������  �##&�&�� ���!",
�!�& �&5�&�&��������

The next study concerns the development of a screen to
separate hits from non-hits of a combinatorial library. In
order to achieve this, one needs the results of the testing
of the compounds of a combinatorial chemistry experi-
ment in an assay used in high-throughput screening. The
library that was investigated consisted of hydantoins
synthesized from 18 aldehydes, 24 amino acids and 24
isocyanates (Fig. 18). This produced 18� 24�
24 = 10368 hydantoins, of which 5328 compounds were
tested in a specific assay; 185 compounds (3.5%) turned
out to be hits in this assay testing.

The task was then to use this information to develop a
filter that can separate hits from non-hits and, thus, could
be employed in the screening of a virtual library of
hydantoins. In order to achieve this, six different
structure representations were explored: Daylight finger-
prints of three different lengths (256, 512 and 1024
dimensions) and three autocorrelation vectors of mol-
ecular surface properties [molecular electrostatic poten-
tial (ESP), hydrogen bonding potential (HBP) and
hydrophobicity potential (HPP)]. In this case, Eqn. (4)
is used in such a way that ai and aj are properties of points
on the molecular surface (ESP, HBP or HPP); d is now
the distance of these two points on the molecular surface
with the products of all distances in a certain range (e.g.
between 1.5 and 2.0 Å) collected at the same position [in
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this case at A(3)] of the autocorrelation vector. A 26-
dimensional autocorrelation vector was calculated in the
range 0–13.5 A.

Separate Kohonen networks were trained with these
six different structure representations, each network
containing 60� 45 neurons. The three different Daylight
fingerprint representations all gave rather similar maps.
As a typical result the Kohonen map obtained with 256
Daylight fingerprints is shown in Fig. 19.

As can be seen, the hits are spread all over the map;
this representation is not useful for developing a screen to
separate hits from non-hits.

From the autocorrelations of the three molecular

surface properties, the results obtained from the hydrogen
bonding potential appeared to be the most promising
(Fig. 20). As can be seen, the hits collect in a cluster of
the Kohonen map, although even in this cluster hits and
non-hits are highly interdispersed. Is this a useful result?
Remember that we want to separate hits from non-hits
with an emphasis on making sure that we get as many of
the hits as possible.

To this end, we made the assumption that a neuron that
has obtained a hit in the training phase is likely also to
obtain hits from the virtual library. In order to make sure
that we do not lose hits, we made the additional
assumption that a hit might also end up in a neuron
directly adjacent to a neuron that had obtained a hit.
Figure 21 shows the development of such a screen by a
recoloring of part of the Kohonen map.

After these preliminary investigations, we proceeded
as follows: the dataset was split into two-thirds of the
compound for training and one-third for testing making
this split with the same ratio for both the hits and the non-
hits. The structures were represented by autocorrelation
of the hydrogen bonding potential and used for training a
Kohonen network of 48� 38 neurons. This gave the
results shown in Figure 22 at the left-most side. After
recoloring to obtain a classification filter, the map shown
in the center of Fig. 22 was obtained. Sending the test set
of 67 hits and 1761 non-hits through this network mapped
64 (96%) of the hits into the black area selected to
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potentially contain hits and 1619 (92%) of the non-hits
into the area around this cluster. Thus, 96% of the hits
could be retrieved (i.e. 4% false negatives) with only 8%
contamination by non-hits (false positives).

The essence of this study is that Kohonen networks,
together with visualization tools, are very powerful for
screening different structure representations to find the
one most appropriate for the problem at hand.

&���9���>��� ?!��������:& ���!"�!�&@
�"��:��; �&�������>�5�<� "�89��& �5,
5��"����� �# !��!5&�:��& �� �!5&�,
:��& �&������

The power of a Kohonen network for rapidly testing
different structure representations can also be utilized
when a quantitative model between the structure of a
compound and some of its physical, chemical or
biological properties needs to be established.

A feed-forward neural network trained with the
backpropagation algorithm4,17 is such a powerful model-
ing technique that it can come up with an apparently good
quantitative model that has nevertheless a sub-optimal
predictive power. In order to develop as good a model as
possible, we recommend first investigating different
structure representations by an unsupervised learning
method such as a Kohonen network, before using it to

build a quantitative relationship by a supervised learning
method such as a backpropagation (BPG) network.

In order to illustrate this point we use the widely
studied dataset of 31 steroids binding to the corticosteroid
binding globulin (CBG) receptor.18 Again, an autocorre-
lation vector was used; this time, the molecular electro-
static potential on the surface of the steroids was
condensed into a 12-dimensional autocorrelation vector
[cf. eqn (4)].8

A Kohonen network consisting of 9� 9 neurons in a
toroidal arrangement was used for mapping these 31
steroids. The binding affinity of these steroids to the CBG
receptor was then split into three categories, high,
intermediate and low, and this classification was used
for visualizing the mapping as indicated in Figure 23.

Having a toroidal arrangement of neurons, one should
remember that the neurons on the right-hand margin are
direct neighbors of the neurons on the left-hand margin
and a similar situation is given for the neurons on the top
and the bottom lines (cf. Fig. 5). One way of visualizing
this closed topology is to replicate such a map several
times and put such identical maps together like tiles. The
result of tiling four maps of Fig. 23 is shown in Fig. 24.

Figure 24 clearly shows that steroids separate fairly
well into those having high, intermediate and low
activity. This result is indicative that the chosen structure
representation is appropriate for modeling CBG receptor
binding activity. Therefore, the 12 autocorrelation
vectors of the molecular electrostatic potential of these
31 steroids were taken to train a feed-forward network of
the architecture shown in Fig. 25 by the backpropagation
algorithm.8

Cross-validation by the leave-one-out method gave the
result shown in Fig. 26 with a cross-validated r2 = 0.86
and a standard deviation in pK value of the binding
constant of 0.42. A CoMFA model based on 21
compounds of the same dataset had a fourfold cross-
validated r2 of 0.66.18 Note that the cross-validated r2 of
these two studies is not directly comparable as fourfold
cross-validation is a more stringent test than leave-one-
out cross-validation. However, it shows that a relatively
simple representation such as autocorrelation vectors of
the molecular electrostatic potential are highly successful
in predicting CPG affinity.
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Fairly often, molecules bind to several receptors and have
several biological activities. Then, the problem might be
to increase the selectivity, to maximize the binding to one

activity while simultaneously minimizing the other
activity, particularly if the other activity is toxicity. In
the present study (unpublished work) we will investigate
a dataset of 115 compounds having nine different
biological activities.19 Specifically, these compounds
are all toxicants having nine different modes of toxic
action. Table 3 shows these modes of toxic action (MoA)
and the number of compounds for each MoA.

This dataset had already been studied by other
statistical methods such as principal component analysis
(PCA), linear discriminant analysis and the partial least-
squares (PLS) method.19
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1. Non-polar non-specific compounds 14
2. Polar non-specific compounds 18
3. Uncouplers of oxidative phosphorylation 25
4. Inhibitors of photosynthesis 15
5. Inhibitors of acetylcholinesterase 14
6. Inhibitors of respiration 3
7. Thiol-alkylating agents 9
8. Reactives 8
9. Estrogenic compounds 9

Total 115
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We intentionally chose here the same structure
representation as the one taken in the earlier study19 in
order to show some possibilities evolving from working
with a neural network method. The emphasis in this
example is placed on the comparison of different network
architectures and not on quantitative results.

Table 4 gives the ten descriptors chosen for the
representation of the 115 molecules of the dataset.

The dataset was then sent into a counterpropagation
(CPG) network consisting of 13� 9 neurons with 10
layers (one for each descriptor) in the input block and one
layer in the output block (Fig. 27), with the output values
having nine different values corresponding to the nine
different MoA. The resulting distribution of modes of
action in the output layer after training the network is
shown in Fig. 28.

Clearly, no pronounced clustering of the compounds
according to MoA can be discerned. What is the
problem? Is the chosen structure representation not
appropriate for this specific problem?

Rather than making this statement we want to show
that a counterpropagation network can offer an archi-
tecture that is well suited to these multicategory datasets,
to datasets for which a battery of biological activity data
is available. For such problems, one layer for each
biological activity should be chosen. In the given case,
the architecture of a counterpropagation network shown
in Fig. 29 was selected.

With this CPG network, interesting results were
obtained: for modes of toxic action that correspond to

toxicities associated with receptor binding a clustering of
the compounds could be observed. For example, the layer
in the output block corresponding to estrogenic com-
pounds (layer 9 in the output block) showed a clear
clustering of the active compounds (Fig. 30).

In a similar manner, compounds that are inhibitors of
acetylcholinesterase cluster in the corresponding layer of
the output block (Fig. 31).

On the other hand, compounds corresponding to rather
general, unspecific modes of toxic action are distributed
over a broad area in the respective layer, as shown for
polar non-specific toxicants in Fig. 32.

For these kind of toxicities, not quite specific structural
prerequisites are required leading to some spread in
structural space.

These results should have illustrated that the use of a
counterpropagation network can lead to new insights
when a battery of biological activities is given.
Furthermore, a CPG network is the tool of choice for
optimizing selectivity in different biological activities.

�!88��; �� "��"�!�����

Learning from data has always been and still is the most
important method for obtaining knowledge in chemistry.
Powerful computerized learning methods have become
available for assisting in this knowledge acquisition
process.

Artificial neural networks are some of the most
powerful data mining tools for combining data from
diverse sources and finding connections between these
data. Drug design in particular has a strong need for such
data mining tools as, first, sometimes enormous amounts
of data have to be processed, and second, complex
relationships have to be studied and modeled.
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In this paper, we have concentrated on self-organizing
neural networks and have shown a wide range of
applications in the drug design process. We have
particularly emphasized the importance of unsupervised
learning. However, we do know that supervised learning
is also of much importance but it should be the second
step in data analysis.

We strongly believe that the architecture of a Kohonen
or counterpropagation network is particularly suited for
studying chemical data and the relationship between
structural information and physical, chemical or biologi-
cal properties.

Important as the particular method chosen for data
analysis is, it should not be forgotten that the real secret to
success in analyzing chemical data lies in an appro-
priately chosen structure representation. We have to
strive to find the best structure representation for a given
problem. Different levels of structure resolution—con-
stitution, 3D structure, molecular surfaces—and different
physicochemical properties have to be selected, con-
formational flexibility has often to be accounted for and
chirality might be of influence. A wide range of structure
coding methods have been developed—and to come back
to where we started: self-organizing neural networks and
visualization techniques associated with them offer a way
of rapidly scanning different structure representations.
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